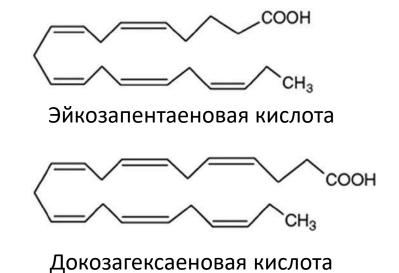


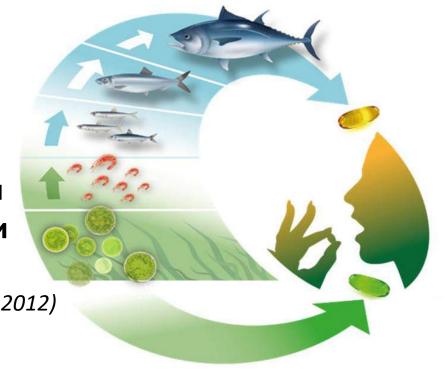
Московский государственный университет имени М.В. Ломоносова Биологический факультет Кафедра микологии и альгологии


ИЗУЧЕНИЕ ШТАММОВ МИКРОВОДОРОСЛЕЙ-ПРОДУЦЕНТОВ Ω-3 ПОЛИНЕНАСЫЩЕННЫХ ЖИРНЫХ КИСЛОТ И ОПТИМИЗАЦИЯ ИХ КУЛЬТИВИРОВАНИЯ

Выполнила студентка II курса магистратуры Голубева Александра Игоревна

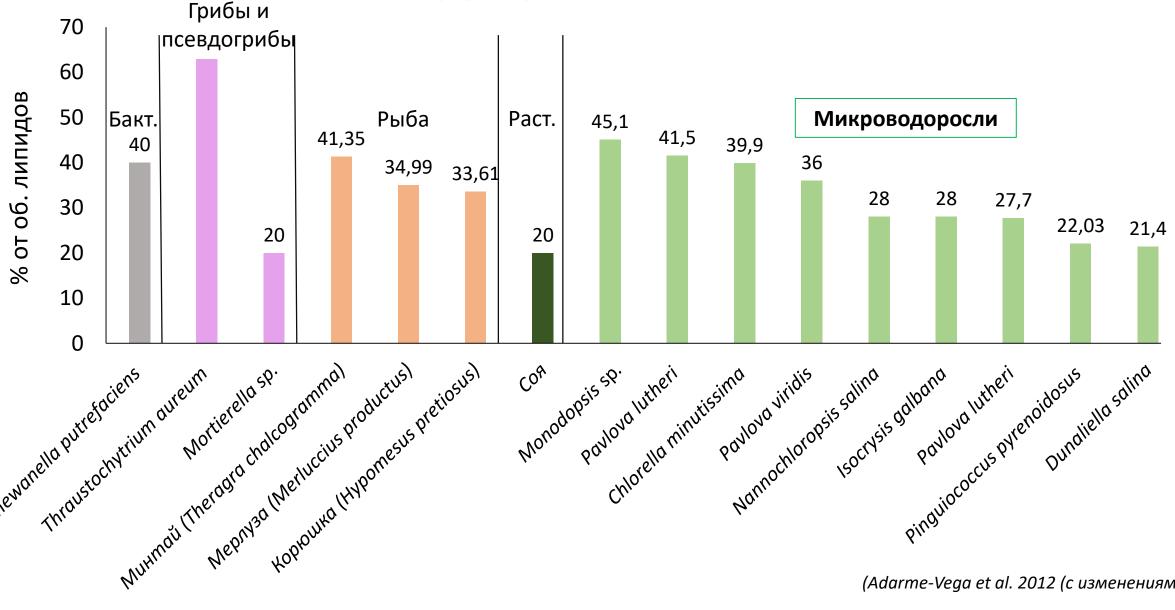
Научные руководители: к.б.н. Кузьмин Денис Владимирович к.б.н., доцент Гололобова Мария Александровна

АКТУАЛЬНОСТЬ И ПРОБЛЕМАТИКА


ω-3 полиненасыщенные жирные кислоты (ПНЖК)

Основные источники ω-3 ПНЖК:

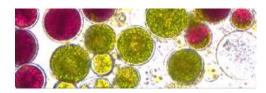
- Рыба
- Растения
- Бактерии и грибы
- Микроводоросли (синтез *de novo*)


(Adarme-Vega et al., 2012)

Физиологический эффект

- Снижают риск возникновения аутоиммунных заболеваний
- Играют важную роль в предупреждении психиатрических заболеваний
- Значительно снижают уровень холестерина в крови
- Предупреждают возникновение сердечно-сосудистых заболеваний

МИКРОВОДОРОСЛИ – КОНКУРЕНТОСПОСОБНЫЕ ПРОДУЦЕНТЫ Ω-3 ПНЖК



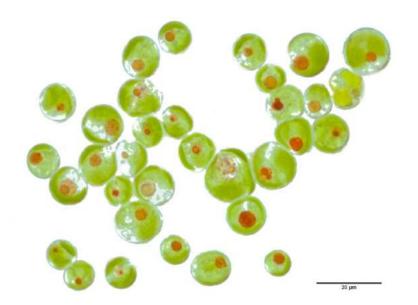
ЦЕЛЬ И ЗАДАЧИ ИССЛЕДОВАНИЯ

Цель: изучить штаммы микроводорослей — перспективных продуцентов ω-3 полиненасыщенных жирных кислот (ПНЖК) и оптимизировать условия их культивирования

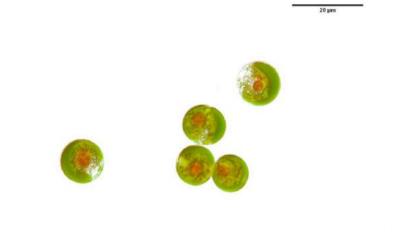
Задачи:

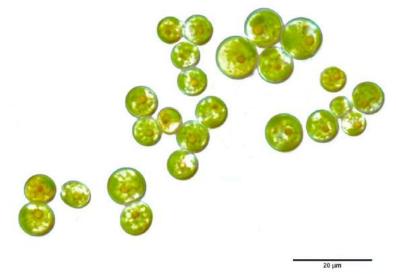
- 1. Провести анализ литературных данных о микроводорослях потенциальных продуцентах ω-3 ПНЖК
- 2. Изучить морфологию штаммов потенциальных продуцентов ω-3 ПНЖК при помощи световой микроскопии
- 3. Исследовать антибиотическую активность этих штаммов
- 4. Определить физиолого-биохимические характеристики отобранных штаммов
- 5. Выявить высокопродуктивные штаммы и оптимизировать условия их культивирования
- 6. Культивировать высокопродуктивные штаммы в полупромышленных условиях

ОБЪЕКТЫ ИССЛЕДОВАНИЯ


Отдел Ochrophyta

Класс Eustigmatophyceae
Порядок Eustigmatales


Семейство Eustigmataceae


из коллекции SYKO (ИБ Коми НЦ УрО РАН)

Eustigmatos polyphem (Pitschmann) D.J.Hibberd SBV-119

Eustigmatos magnus (J.B.Petersen) D.J.Hibberd SBV-108

Eustigmatos vischeri D.J.Hibberd SBV-123

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Отдел Ochrophyta

Класс Eustigmatophyceae
Порядок Eustigmatales

Семейство Eustigmataceae

из коллекции SYKO (ИБ Коми НЦ УрО РАН)

Vischeria punctata Vischer SBV-113

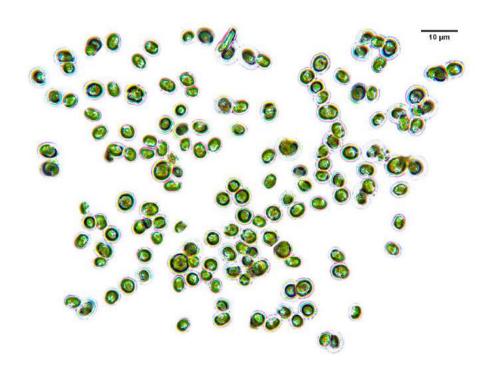
Vischeria helvetica (Vischer & Pascher) D.J.Hibberd SBV-112

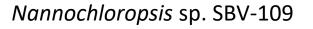
Vischeria stellata (Chodat) Pascher SBV-121

из коллекции микроводорослей ИБВВ

ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Отдел Ochrophyta


Класс Eustigmatophyceae

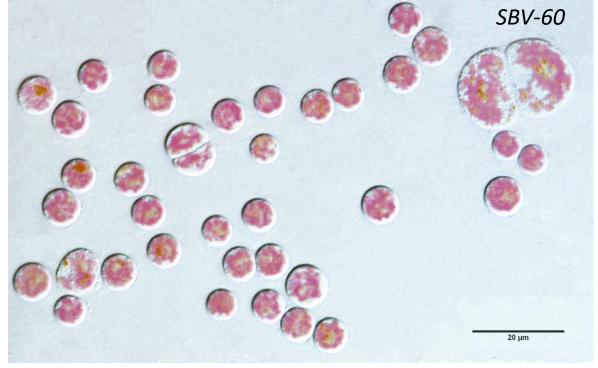

Порядок Eustigmatales

Семейство Monodopsidaceae

из коллекции SYKO (ИБ Коми НЦ УрО РАН)

Monodopsis unipapilla (Reisigl) L.M.A.Santos SBV-120




ОБЪЕКТЫ ИССЛЕДОВАНИЯ

Отдел Rhodophyta

Класс Porphyridiophyceae

Porphyridium purpureum (Bory) K.M.Drew & R.Ross

СТАНДАРТНЫЕ УСЛОВИЯ КУЛЬТИВИРОВАНИЯ

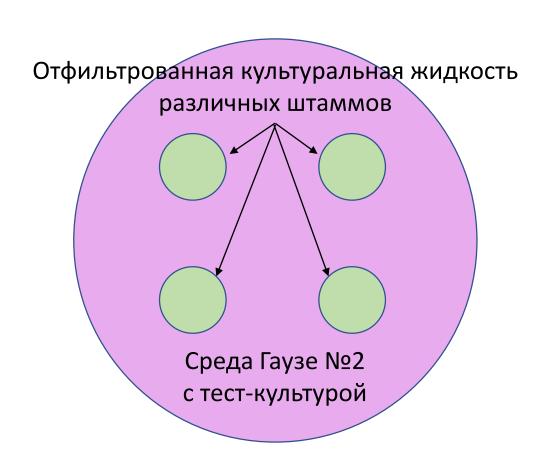
- **Среда:** 3NBBM (модифицированная среда Болда); для морских F/2x10 (*Nannochloropsis* sp., *Porphyridium* sp. SBV-106, SBV-60)
- Температура: 25°C
- **Освещенность:** 100 µМ фотонов м⁻² с⁻¹
- **Фотопериод:** 16 «день» / 8 «ночь»
- рН среды: 8-9
- СО₂ в поступающей смеси: 5%
- Перемешивание: 150 об/мин
- Длительность культивирования: 14 дней

- Для визуального контроля роста, чистоты культур, контроля морфологии на разных стадиях роста был использован *световой микроскоп Olympus CX-45*
- Оптическую плотность инокулята ($OD_{680-720}$) определяли методом *спектрофотометрии* по формуле:

$$OD_{680-720} = A_{680} - A_{720}$$

где A_{680} , A_{720} — оптическая плотность инокулята при длине волны 680 нм и 720 нм

- Количественное содержание нитратов в среде определяли УФ-методом (Nitrate, UV Screening Method, Hach©), основанном на измерениях поглощения раствора двух длин волн: 220 нм (нитраты и органические вещества) и 275 нм (только органические вещества) с использованием спектрофотометра
- Количественное содержание фосфатов в среде определяли методом *PhosVer 3®* (*USEPA PhosVer 3®* (*Ascorbic Acid*) *Method, Hach©*), основанном на взаимодействии молибдата с ортофосфатом с образованием комплекса, который разрушается аскорбиновой кислотой и окрашивается синим, и может поглощать длину волны *880* нм с использованием спектрофотометра


• Сухую биомассу получали, используя метод лиофильной сушки, основанный на удалении воды из осадков при глубоком вакууме

Методика:

- концентрировать биомассу в проточной центрифуге (4000 оборотов в минуту)
- заморозить ее при температуре -80°C
- замороженную биомассу поместить в лиофильную сушку при температуре конденсора 50°C в течение 48 часов
- хранить при температуре -80°C

- Измерение *концентрации белков проводили методом ВСА* (Smith et al., 1985)
- Измерение *концентрации углеводов* проводили методом Van Wychen, Laurens (2015) в модификации Намсараева, Голубевой, Бутаевой (неопубликованные данные)
- Для измерения **концентрации липидов** использовали **гравиметрический метод**
- **Анализ жирных кислот** проводили по методике **ВЭЖХ** по Blau, Halket (1993)

• Для изучения антибиотической и антифунгальной активности штаммов использовался метод «лунок» (Гаузе, 1958)

• Тест-объекты

Грамположительные бактерии:

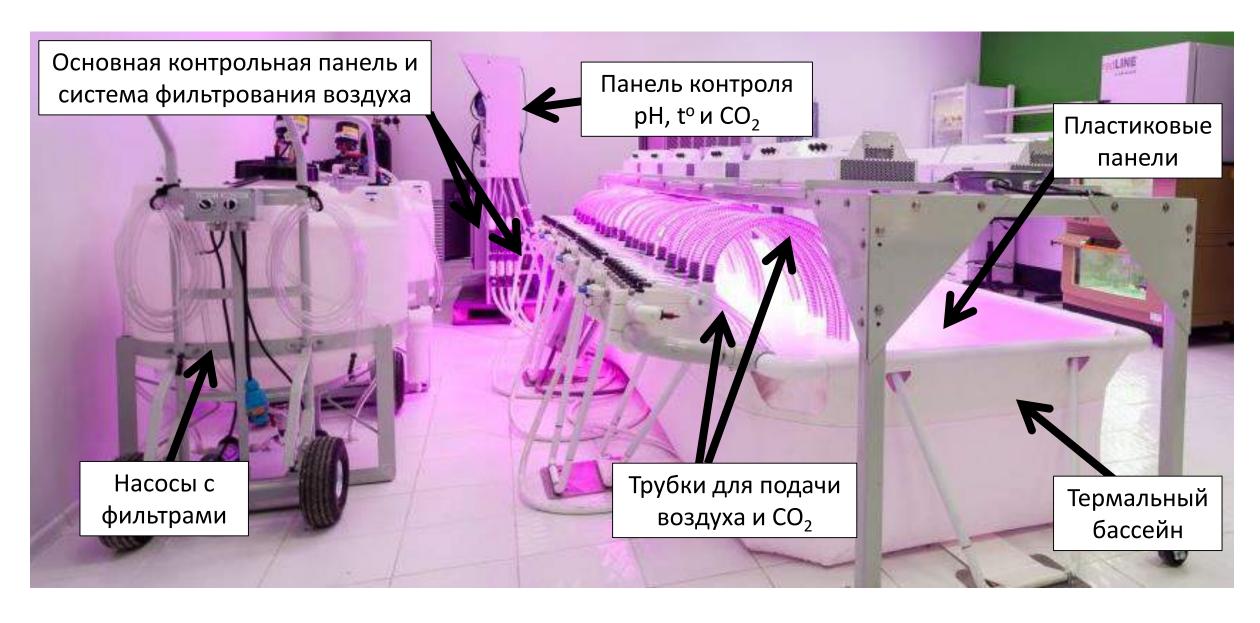
Bacillus subtilis ATCC 6633

Staphylococcus aureus FDA 209P (MSSA)

Staphylococcus aureus INA 00761 (MRSA)

Грамотрицательные бактерии:

Escherichia coli ATCC 25922


Pseudomonas aeruginosa ATCC 27853

Грибы:

Aspergillus niger INA 00760

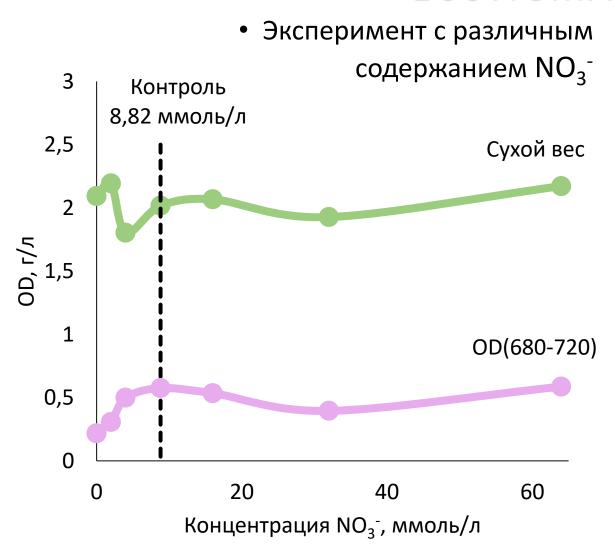
Candida albicans ATCC 2091

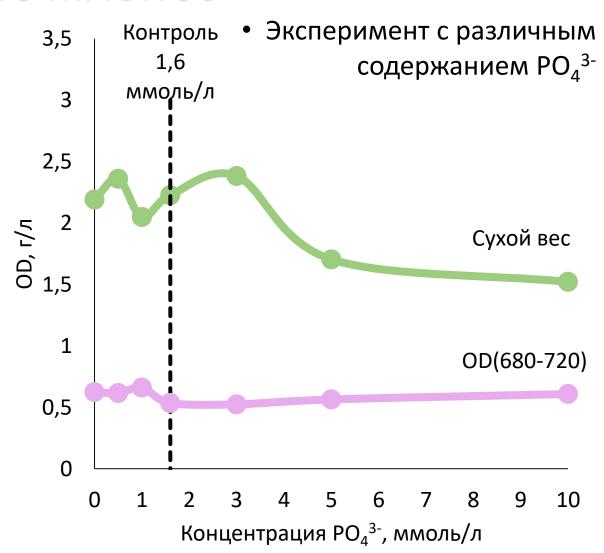
СХЕМА СТРОЕНИЯ ФОТОБИОРЕАКТОРА LUMIA AGS-260

ФИЗИОЛОГО-БИОХИМИЧЕСКОЕ ИЗУЧЕНИЕ ШТАММОВ

Штамм	Вид	Накопление биомассы, г/л	Содержание ЭПК, мг/г	Накопление ЭПК, мг/л
28A-60	Porphyridium purpureum	3,08	8,93	27,50
SBV-106	Porphyridium sp.	3,23	9,62	31,02
SBV-109	Nannochloropsis sp.	1,37	37,54	51,43
SBV-120	Monodus unipapilla	1,50	53,04	79,56
SBV-119	Eustigmatos polyphem	2,06	39,55	81,47
SBV-123	Eustigmatos vischeri	2,80	45,77	128,16
SBV-108	Eustigmatos magnus	4,20	45,6	191,52
SBV-121	Vischeria stellata	2,07	42,64	88,26
SBV-113	Vischeria punctata	1,63	47	76,61
SBV-112	Vischeria helvetica	2,33	44,48	103,64

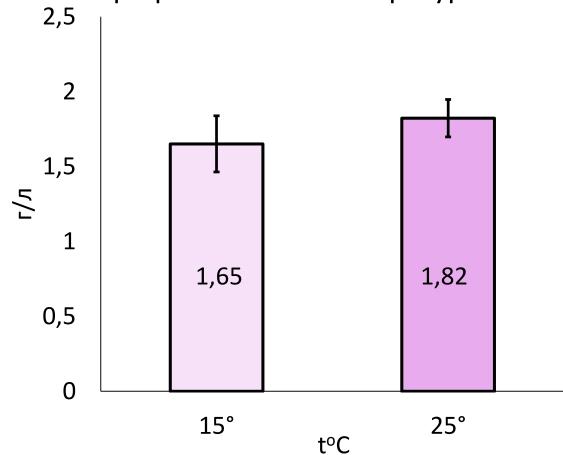
БИОХИМИЧЕСКИЙ СОСТАВ

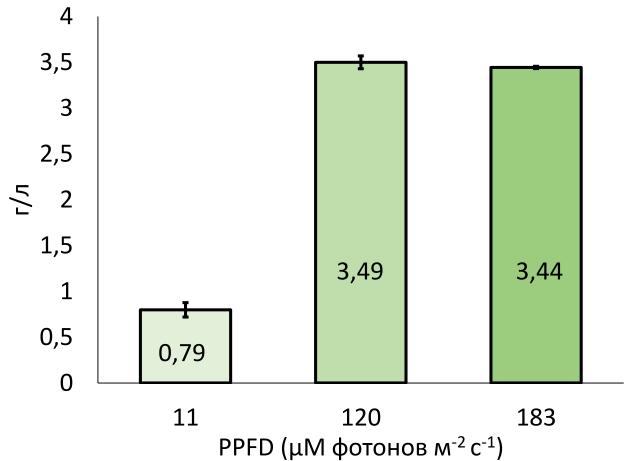

Штамм	Вид	Белки, %±SD	Углеводы, %±SD	Липиды, %±SD
2BA-00	Porphyridium purpureum	26,00±0,24	37,37±0,56	9,16±0,01
SBV-106	Porphyridium sp.	21,90±0,60	31,98±1,36	4,73±1,41
SBV-109	<i>Nannochloropsis</i> sp.	21,70±0,56	21,10±0,37	23,10±2,51
SBV-120	Monodus unipapilla	14,00±0,00	23,73±1,08	31,27±1,98
SBV-119	Eustigmatos polyphem	18,10±0,45	19,09±0,37	26,5±2,4
SBV-123	Eustigmatos vischeri	15,17±0,45	23,69±0,52	13,4±0,66
SBV-108	Eustigmatos magnus	23,20±0,10	30,52±1,87	35,83±0,61
SBV-121	Vischeria stellata	21,70±0,39	27,15±0,00	41,07±1,97
SBV-113	Vischeria punctata	25,80±0,12	23,21±0,28	17,76±1,91
SBV-112	Vischeria helvetica	19,60±0,83	35,80±3,76	16,88±0,63


ВЛИЯНИЕ РАЗЛИЧНЫХ ФАКТОРОВ НА НАКОПЛЕНИЕ Ω-3 ПНЖК (ЭПК) В КЛЕТКАХ МИКРОВОДОРОСЛЕЙ

Факторы	Микроводорослей, для которых показано увеличение содержания ω-3 ПНЖК (ЭПК)	
Увеличение концентрации нитратов	Nannochloropsis oceanica (Meng et al., 2015); Pavlova lutheri (Meng et al., 2015); Isochrysis galbana (Liu et al., 2013);	
Уменьшение интенсивности освещенности	Chaetoceros brevis (Boelen et al., 2013); Thalassiosira weissflogii (Boelen et al., 2013); Nannochloropsis sp. (Mitra et al., 2015)	
Уменьшение солености	Nannochloropsis sp. (Renaude et al., 1994); Isochrysis galbana (Renaude et al., 1994)	
Уменьшение температуры	Chaetoceros brevis (Boelen et al., 2013); Thalassiosira weissflogii (Boelen et al., 2013); Isochrysis galbana (Zhu et al., 1997); Nannochloropsis sp. (Mitra et al., 2015)	

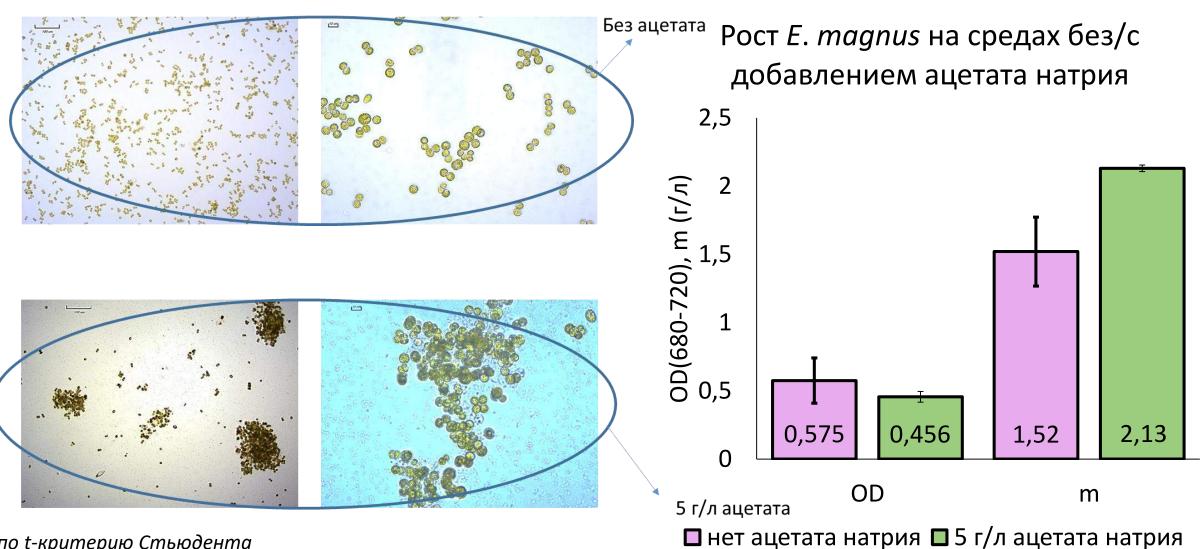
1/


ВЛИЯНИЕ РАЗЛИЧНЫХ КОНЦЕНТРАЦИЙ НИТРАТОВ И ФОСФАТОВ В СРЕДЕ НА ВЫХОД БИОМАССЫ EUSTIGMATOS MAGNUS

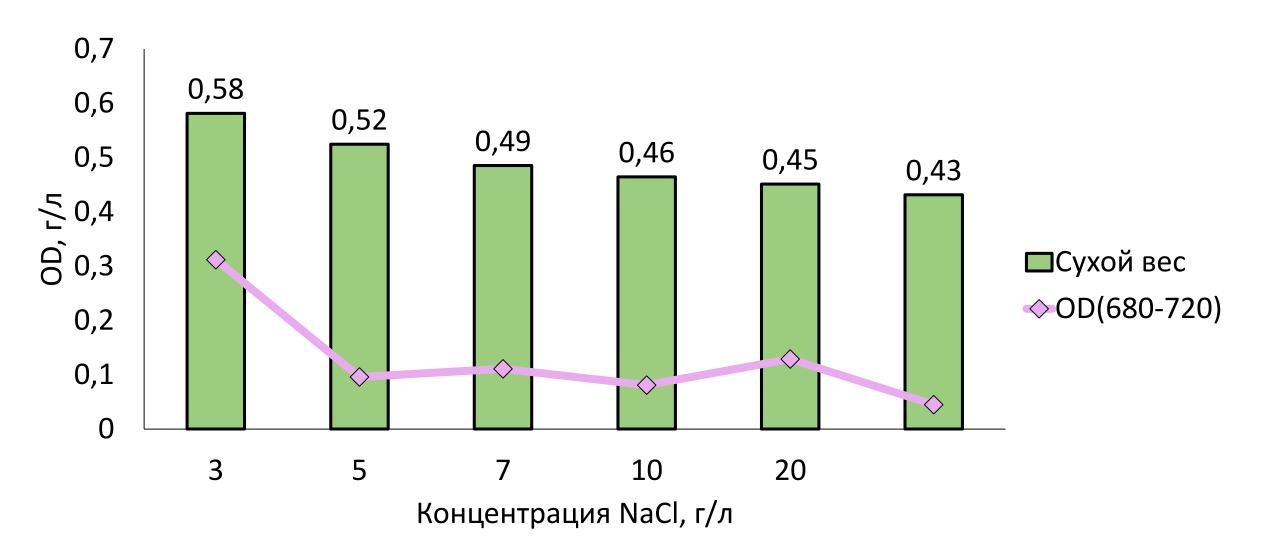


ВЛИЯНИЕ ТЕМПЕРАТУРЫ И ИНТЕНСИВНОСТИ ОСВЕЩЕНИЯ НА ВЫХОД БИОМАССЫ *E. MAGNUS*

Значения сухой массы *E. magnus* при различной температуре

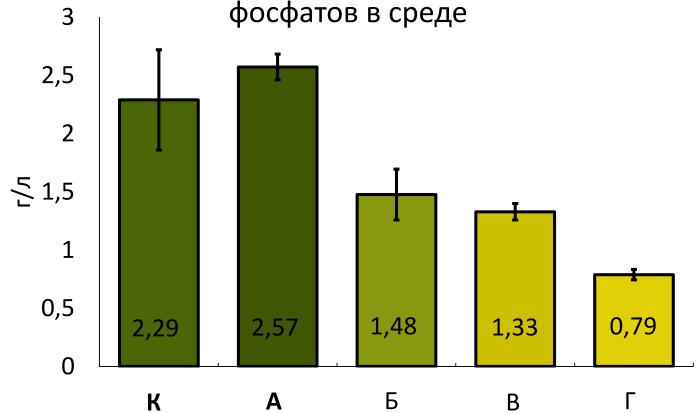


по t-критерию Стьюдента нет статистически значимых различий Значения сухой массы *E. magnus* при различной интенсивности освещения



По дисперсионному анализу есть статистически значимые различия в группе

ВЛИЯНИЕ АЦЕТАТА НАТРИЯ В СРЕДЕ НА ВЫХОД БИОМАССЫ *E. MAGNUS*



ВЛИЯНИЕ СОЛЕНОСТИ СРЕДЫ НА ВЫХОД БИОМАССЫ *E. MAGNUS*

ОПРЕДЕЛЕНИЕ УСЛОВИЙ, ОБЕСПЕЧИВАЮЩИХ ОПТИМАЛЬНЫЙ ВЫХОД Ω-3 ПНЖК (ЭПК) В БИОМАССЕ *E. MAGNUS*

Значения сухой массы *E. magnus* при разном содержании нитратов и фосфатов в среде

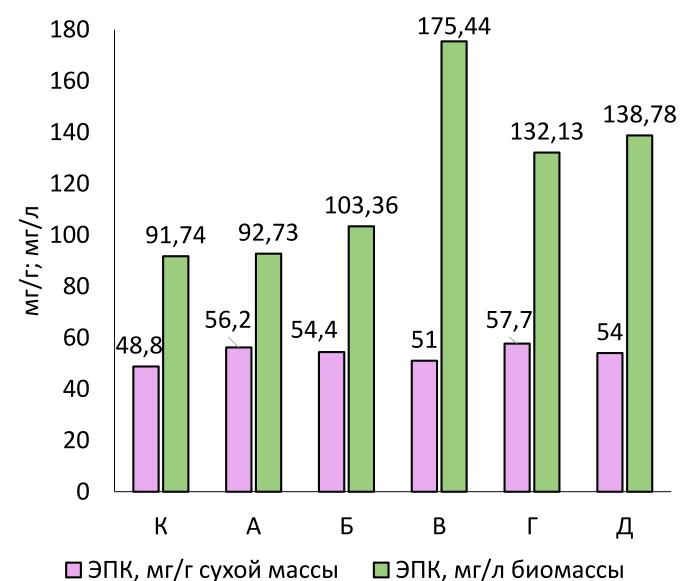
По дисперсионному анализу нет статистически значимых отличий между "К" и "А"

Условия культивирования:

температура 15°C и освещение 180 µмоль м⁻²с⁻¹

K – "контроль" – 1,6 ммоль Р и 8,82 ммоль N

A – 1,6 ммоль Р и 16 ммоль N


B - 1,6 ммоль P и 0 ммоль N

B - 0 ммоль P и 16 ммоль N

 $\Gamma - 0$ ммоль P и 0 ммоль N

ВЛИЯНИЕ РАЗЛИЧНЫХ УСЛОВИЙ КУЛЬТИВИРОВАНИЯ НА СОДЕРЖАНИЕ И НАКОПЛЕНИЕ Ω -3 ПНЖК (ЭПК) В *E. MAGNUS*

Условия культивирования:

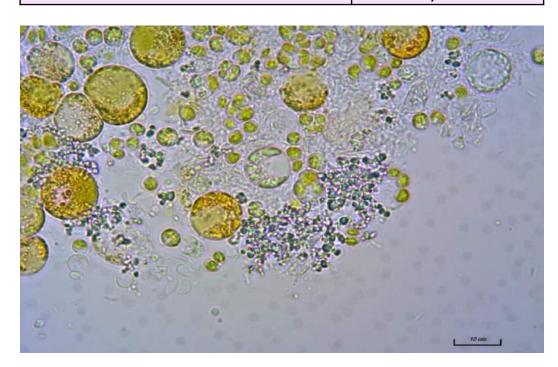
Фосфат – 1,6 ммоль

 $K - "контроль" - 8,82 ммоль N; температура 25°C и освещение 120 <math>\mu$ моль $M^{-2}c^{-1}$

A - 8,82 ммоль N; температура 15° C и освещение $120~\mu$ моль м $^{-2}$ с $^{-1}$

Б-16 ммоль N; температура 15° С и освещение $120~\mu$ моль м $^{-2}$ с $^{-1}$

B — 8,82 ммоль N; температура 25°С и освещение 180 µмоль ${\rm M}^{\text{-2}}{\rm c}^{\text{-1}}$


 $\Gamma - 8,82$ ммоль N; температура 15°С и освещение 180 µмоль м $^{-2}$ с $^{-1}$

 $\rm Д-16$ ммоль N; температура $\rm 15^{o}C$ и освещение $\rm 180~\mu моль~ M^{-2}c^{-1}$

КУЛЬТИВИРОВАНИЕ *E. MAGNUS*В ФОТОБИОРЕАКТОРЕ LUMIA AGS-260

• Первое культивирование (сентябрь 2018)

День культивирования	OD(680-720)	
0	0,092	
14	0,436	

• Второе культивирование (апрель 2019)

День культивирования	OD(680-720)	
0	0,237	
14	0,178	

выводы

- 1. Проведенный *анализ литературных данных* показал, что для использования какого-то вида микроводорослей для получения ω-3 ПНЖК в лабораторных/полупромышленных/промышленных масштабах, только одного условия значительного содержания ЖК в клетках, недостаточно, так как *необходимо проводить исследования штаммовых характеристик вида*, а также *оптимизировать* его рост в определенных условиях.
- 2. Исследования морфологии, а также физиолого-биохимических свойств 10 штаммов микроводорослей показали, что содержание нитрата в среде является лимитирующим фактором развития для всех изученных штаммов; содержание белков, липидов и углеводов у всех штаммов широко варьирует; ни один из штаммов не является перспективным для получения антибиотических веществ.

выводы

- 3. На основании изучения *физиолого-биохимических свойств* 10 штаммов был отобран *наиболее перспективный продуцент ω-3 ПНЖК* штамм SBV-108 *Eustigmatos magnus,* так как он имел хороший выход биомассы и высокую скорость роста наряду с высоким содержанием ЭПК.
- 4. В ходе экспериментов по оптимизации условий культивирования были определены оптимальные условия для роста штамма SBV- 108 Eustigmatos magnus как продуцента ω-3 ПНЖК.
- 5. Эксперименты по культивированию штамма SBV-108 Eustigmatos magnus в фотобиореакторе показали, что для успешного культивирования необходима более тщательная стерилизация составных частей реактора, а также определенная концентрация биомассы в инокуляте.

БЛАГОДАРНОСТИ

- **Команде лаборатории ООО «Соликсант»** за предоставленную возможность работать над данной тематикой, ценные методические указания и помощь в процессе;
- *Никите Зотько* за помощь в работе с биореактором Lumia AGS-260;
- *Евгению Сергеевичу Гусеву* и *Зоригто Баировичу Намсараеву* за ценные методические указания и помощь в постановке экспериментов;
- **Дмитрию Алексеевичу Чудаеву** за помощь в работе с микроскопом;
- **Екатерине Юрьевне Благовещенской** за помощь в статистической обработке данных;
- Айсылу Рахмановой за помощь в оформлении работы;
- Галине Бутаевой за всевозможную помощь и поддержку в течение всей работы;
- Сотрудникам кафедры микологии и альгологии;
- Моему рецензенту, Максиму Сергеевичу Куликовскому;
- Моим научным руководителям, *Марии Александровне Гололобовой* и *Денису Владимировичу Кузьмину*, без которых данная работа бы не получилась.