ПРОГРАММА ПО КУРСУ «ТЕХНИЧЕСКАЯ МИКОЛОГИЯ» IV КУРС БИОЛОГИЧЕСКИЙ ФАКУЛЬТЕТ МГУ КАФ. МИКОЛОГИИ И АЛЬГОЛОГИИ

Преподаватели: д.б.н., проф. Александр Васильевич Кураков, к.б.н., н.с. Лидия Николаевна Чекунова.

Объем курса – 28 часов.

Форма отчетности – экзамен.

Биотехнология

Введение

Мировой рынок продуктов биотехнологии и производства с использованием мицелиальных и дрожжевых грибов. Определение предмета и места технической микологии в системе научных и технологических дисциплин. Краткая история развития технической микологии.

Биотехнологические производства на основе грибных организмов.

Обобщенная схема биотехнологических производств. Микробиологические и технологические факторы эффективности производств. Культивирование микроорганизмов и специфика выращивания грибов (плодовых тел, биомассы, органических кислот, ферментов, антибиотиков и других вторичных метаболитов). Биореакторы. Системы GLP и GMP. Разделение биомассы и жидкости. Дезинтеграция клеток. Экстрагирование. Концентрирование и выделение целевых продуктов. Сушка продуктов при поверхностном и глубинном культивировании. Контроль и управление биотехнологическими процессами, моделирование и оптимизация.

Генетические технологии в технической микологии.

Практическая молекулярная таксономия. Геномика грибов. Молекулярные киты в грибных биотехнологиях. Трансформации у грибов посредством *Agrobacterium tumifaciens*.

Биотехнологии получения биомассы и белка с использованием дрожжевых и мицелиальных грибов.

Получение БВК (белково-витаминного концентрата, single cell protein, "SCP"). История использования микробной биомассы в качестве белковых компонентов питания. Технологии производства БВК. Субстраты для производства 1-го поколения (углеводы) и их подготовка. Критерии отбора штаммов дрожжей и других микроорганизмов (усвоение пентоз, гексоз, устойчивость к фурфуролу). Типы ферментеров, условия культивирования, производительность. Проблема очистки воздуха. Химический состав продукта.

Субстраты 2-го поколения (углеводороды). Механизмы поглощения и утилизации углеводородов. Требования к углеводородному сырью (высокая доля парафинов, низкая ароматических веществ), условия ферментации. Причины свертывания производств БВК на жидких углеводородах. Перспективы использования субстратов 3-го поколения (метанол, этанол — дрожжи, и газообразные углеводороды, водород для производства бактериальной биомассы).

Грибные биотехнологии получения органических кислот.

Биохимия процесса образования органических кислот грибами. Достижения в биохимии и генетическом регулировании синтеза органических кислот грибами (рассматриваемые кислоты включают полифункциональные кислоты, с одной или более карбоксильной, гидроксильной группами, которые тесно связаны с главными метаболическими путями). Современные И потенциальные крупномасштабные производства органических кислот с помощью грибов. Ведущие коммерческие продуценты – Aspergillus niger, A. terreus, Rhizopus oryzae. Успехи в получении лимонной, глюконовой, итаковой и молочной кислот, ограничения – в промышленном производстве фумаровой, щавелевой и ряда других кислот.

Лимонная кислота. Технологии производства, среды, субстраты (сахара, жидкие углеводороды). Итаковая кислота. Использование итаковой кислоты в производствах волокон, полимеров, ПАВ, красителей. Синтез грибами, продуценты, особенности сред и технологий культивирования. Глюконовая кислота. Область применения кислоты. Синтез грибами, промышленные продуценты, ферментация. Молочная кислота. Физиологобиохимические и генетические подходы оптимизации синтеза кислоты у гриба *Rhizopus огузае* Разработка и совершенствование грибных технологий получения фумаровой, щавелевой, яблочной и янтарной кислот.

Грибные инокуляты в пищевой и алкогольной промышленности.

Производство алкогольных напитков. Субстраты и их подготовка для процесса брожения. Ферментативный гидролиз полисахаридов субстрата. Традиционные виды дрожжевых и мицелиальных грибов — бродильщиков. Грибные контаминанты производств. Генно-инженерные подходы и штаммы для повышения эффективности производств. Поиск и конструирование эффективных бродильщиков на пентозах.

Дрожжевые и мицелиальные инокуляты при производстве хлебных, соевых, молочных продуктов, сыров. Производство традиционных для Юго-Восточной Азии творожисто-сырных продуктов (туфу, темпекса) на основе ферментации соевой муки грибами Actinomucor elegans, Rhizopus oligosporus.

Производство съедобных грибов.

Культивируемые грибы: спектр видов, их пищевая ценность. Субстраты для выращивания. Особенности биотехнологий получения плодовых тел шампиньонов, вешенки, летнего и зимнего опенка. шиитаке. Поражения/болезни субстрата и грибов. Использование отработанного субстрата. Динамика развития производств культивируемых грибов в России.

Пищевые и кормовые БАДы, включая и обогащенные микроэлементами, на основе биомассы дрожжевых и мицелиальных грибов.

Грибные ферменты

Рынок ферментов. Грибные ферменты биотехнологического назначения, в медицине, микроанализе (гликозидазы, протеиназы, липазы, оксидоредуктазы). Скрининг продуцентов ферментов. Регуляция синтеза ферментов. Молекулярно-генетические подходы улучшения продуцентов. Ауксотрофы, мутанты, устойчивые к катаболитной репрессии. Оптимизация среды и параметров культивирования. Поверхностное и глубинное культивирование на примере производства α-амилазы Aspergillus oryzae. Тренды и будущие разработки: фитазы с улучшенными свойствами (повышенной термостабильностью и каталитической активностью, путем переноса генов, кодирующих фитазы у термофильных и термотолерантных грибов), катализ стереоселективных превращений, производство оптически чистых спиртов, новый фермент лактоназа (из F. oxysporum) для производства d-пантотеновой к-ты. ДНК рекомбинантные технологии: эффективные системы для экспрессии генов - применение новых хозяев для повышения секреции ферментов грибов (экспрессия генов лакказы в дрожжах; трансгенные растения могут быть использованы для производства лакказы). Экспрессия генов фитазы Aspergillus в трансгенных растениях и улучшения их кормовых качеств и экспрессия секреции фермента в определенном органе – например, в корнях, для мобилизации растениями фосфора из почвы.

Биотехнологии получения препаратов для медицины на основе вторичных метаболитов грибов.

Грибные антибиотики и их производство

Спектр грибных антибиотиков и их продуцентов. Способы повышения продукции антибиотиков у промышленных штаммов. Особенности синтеза, оптимизация среды, 2-х фазность ферментации. Особенности выделения, очистки антибиотиков, контроль производства. Отличия препаратов антибиотиков медицинского и сельскохозяйственного назначения.

Грибные биотехнологии получения каротинов, стеролов, алкалоидов, ловастатина. Поиск продуцентов. Перспективные виды для промышленного производства. Особенности синтеза конкретных вторичных метаболитов.

Получение ингибиторов синтеза холестерина – ловастатина.

Грибные биотехнологии получения препаратов с иммуномодулирующим и противоопухолевым действием.

Достижения и перспективы использования культивируемых видов трутовых и агариковых грибов для получения полисахаридов для противораковых препаратов.

Иммуносупрессоры из грибов рода Tolypocladium.

Препарат Бефунгин. Производство тонизирующих препаратов на основе грибов Cordyceps.

Разработка технологии получения ликопина.

Препараты на основе хитина и хитозана.

Медицинские препараты с высокими адсорбционными свойствами, ожого- и ранозаживляющим действием.

Препараты на основе меланинов грибов.

Кремы. Сорбирующие препараты.

Разработка грибных технологий получения ароматизирующих веществ (для парфюмерной, пищевой промышленности)

Потенциально интересные для разработки биотехнологий виды грибов, синтезирующие соединения с дезодорирующими и ароматными свойствами.

Пищевая микология.

Устойчивость грибов к различным экстремальным физико-химическим условиям среды. Метаболиты грибов, вызывающих порчу продуктов. Биотехнологические способы обнаружения микотоксинов в продуктах. Грибные контаминанты продуктов, методы их обнаружения (иммунологические методы, определение специфических соединений грибов, хитина или эргостерола, анализ профилей вторичных метаболитов, импедометрическая детекция, ДНК-пробы и другие молекулярные методы). Способы борьбы с контаминацией продуктов при производстве и хранении.

Некоторые проблемы медицинской микологии.

Классы грибов по группам опасности и уровням биологического риска. Антимикотики нового поколения Причины распространения грибных заболеваний.

Грибы в сельскохозяйственных биотехнологиях.

Микробиологические технологии производства регуляторов роста растений (гиббереллина, фузикокцина). Препараты для микоризации растений. Микогербициды Грибные инсектицидные и нематоцидные препараты. Препараты для контроля

заболеваний растений. Технологии производства грибных препаратов для сельского хозяйства.

Грибы в экологических биотехнологиях.

Деградация ксенобиотиков – стойких токсичных органических соединений, пестицидов, ПАВ, красителей, нефти и нефтепродуктов с применением грибных организмов. Сорбенты на основе грибов.

Инактивация соединений, используемых для контроля грибов на древесине, фунгицидов, пищевых консервантов.

Разработка грибных технологий переработки растительных субстратов и лигнинсодержащих отходов.

Деструкция лигнина и целлюлозы ксилотрофными макромицетами. Лигнинразрушающие грибы и их роль в превращении полимеров. Лигнин – структура и свойства. Гидролитические ферменты лигнинразрушающих грибов. Воздействие фенолоксидаз высших базидиомицетов на различные фенольные соединения. Лигнинпероксидазы лигнолитических грибов. Взаимосвязь биохимических путей превращения лигнина и целлюлозы базидиомицетами. Пероксид-генерирующие ферменты. Продукты деструкции лигнина при воздействии лигнинразрушающих грибов. Роль отдельных факторов. Пероксидаза (КФ 1.11.1.7) в метаболизме грибов.

Получение биотоплива с использованием грибов

Биотехнологии получения биоэтанола. Ферментный гидролиз. Поиск микроорганизмов, сбраживающих широкий спектр углеводов. Генно-инженерные штаммы дрожжей.

Перспективы использования грибов для производства биодизеля.

ЛИТЕРАТУРА

Основная

Волова Т.Г. Биотехнология. Новосибирск. Изд-во Сибирского отделения Российской Академии наук. 1999. 252 с.

Штерниис М.В. (ред.). Биологическая защита растений. М. КолосС. 2004. 264 с.

Tkasz J.S., Lange L. Advances in Fungal Biotechnology for Industry, Agriculture and Medicine. N.Y., Boston, Dordrecht, London, Moscow. Kluyver Academic. Plenum Publ. 2004. 445 p.

Дополнительная

Грачева И.М., Иванова Л.А.(ред.). Биотехнология биологически активных веществ. Учебное пособие для студентов высших учебных заведений. М. Изд-во НПО «Элевар». 2006. 453 с.

Егоров Н.С., Самуилов В.Д. (ред.). Биотехнология в 8 тт. М. 1987.

Елинов Н.П. Основы биотехнологии. Для студентов институтов, аспирантов и практических работников. СПб. Издательская фирма «Наука». 1995. 600 с.

 $\it Kapaвaйко \ \Gamma.A. \$ Микробиологические процессы выщелачивания металлов из руд. М., 1988.

Карасевич Ю.Н. Основы селекции микроорганизмов, утилизирующих синтетические органические соединения. М. Наука. 1982. 144с.

Шевелуха В.С. (ред.). Сельскохозяйственная биотехнология: Учебник. М. Высшая школа 2003 469 с

Биоповреждения промышленных материалов и изделий, вызываемые мицелиальными грибами, и методы защиты от них

Грибы – агенты биоповреждений.

Специфика грибного повреждения материалов.

Влияние типа материала на поражаемость грибами (на примере повреждений полимерных материалов, металлов, нефтепродуктов, произведений искусства, бумаги и книг).

Экологические особенности микромицетов в процессах биоповреждений.

Формирование грибных сообществ на материалах.

Методы определение грибостойкости материалов.

Защита материалов от грибного поражения.

ЛИТЕРАТУРА

Биоповреждения. Учебное пособие для вузов. Под ред. В. Д. Ильичева. М. Высш. шк. 1987. 352 с.

Ребрикова Н.Л. Биология в реставрации. РИО ГосНИИР. 1999. 184 с.

Каневская И.Г. Биологическое повреждение промышленных материалов. Л. Наука. 1984. 229 с.

Андреюк Е.И., Билай В.И., Коваль Э.З., Козлова И.А. Микробная коррозия и ее возбудители. Киев. Наукова Думка. 1980. 274 с.

Составители: д.б.н., проф. А.В. Кураков, к.б.н., н.с. Л. Н. Чекунова